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ABSTRACT 

One of the crucial aspects of density perturbations that are produced by the standard 

inflation scenario is that they are Gaussian. The three point correlation function of the 

temperature anisotropy of the cosmic microwave background radiation (CBR) provides a 

sensitive test of this aspect of the primordial density field. In this paper, this function is 

calculated in the general context of allowed non-Gaussian models. The amplitude of the 

correlation is found to depend logarithmically upon the beam width used in the experiment; 

the angular dependence of the function is found to be sensitive to. the power law index n 

of the power spectrum. Thus an analysis of the correlation function would lead to a new 

constraint on n. These predictions can be tested by COBE and the forthcoming South 

Pole and Balloon CBR anisotropy data. 
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Testing for the Gaussianity of the primordial fluctuation spectrum is of critical im- 

portance to many cosmological models. In particuliar, cosmic inflation [l-3] specifically 

predicts a Gaussian density fluctuation spectrum. The quantum fluctuations generated 

during the inflationary epoch are expected to serve as the primordial density perturba- 

tions which develop into the large scale structures we observe today 14-71. Alternative 

scenarios, such as topological defects (strings, textures, domain walls, etc.), tend to pro 

duce non-Gaussian seeds on scales that were within the horizon at recombination. The 

anisotropy of the cosmic microwave background radiation (CBR) provides a new test of 

Gaussiauity as we will discuss here. 

After two years of operation, COBE has already provided an invaluable testing ground 

for cosmic structure formation theories. Two key, interesting pieces of information have 

been obtained from COBE anisotropy measurements [S-9]. One is the detection of rms 

temperature anisotropy (AT),,, z 30/1K. That is a temperature fluctuation AT/T - 

1.1 x 10-s at 6 - 10” angular scale. The second is the related measurement of a two-point 

temperature correlation function for primordial fluctuations. Temperature fluctuations can 

be related to density perturbations through the Sachs-Wolfe effect [lo]: 

6T 4 - z -, 
T 3 (1) 

where 4 is the gravitational potential at the last scattering surface. The two-point tem- 

perature correlation function is: 

Cr(& fi) =< ~(riL)~(A) >= c C1(21+ l)R(rh . r?), 
I 

where the multipole coefficient cl is related to the power spectrum of density perturbation 

P(k) through [ll]: 
c =V-lH,4< 

1 J “dk 
2x- o ~w)~:(w. (3) 

COBE measurements show that the observed power spectrum of the primordial density 

perturbations is consistent with the scale invariant spectrum predicted by inflation, P(k) - 

k. More specifically, COBE found for a power spectrum, P(k) = Ak”, that n = 1.2f0,::. 

-Competing models for structure formation, including cosmological topological defects 

[12,13]‘and non-standard inflation:models [14,15], will also generate a scale invariant (or 

nearly ‘scale invariant) power spectrum for density perturbations. Thus, the two-point 
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temperature correlation function is not sufficient to discriminate among these models. 

However, as we noted before [16], the three point temperature correlation provides a sensi- 

tive test of the Gaussian nature of density perturbation. We will use the standard inflation 

paradigm as our Gaussian archetype. It may-be possible that a three point temperature 

correlation is generated via a cubic self-interaction of the inflating field (171. But generally, 

the coupling constant for the cubic interaction is negligible in inflationary cosmology. From 

a theoretical point of view, the Lagrangian with cubic self-interaction is not bounded below 

so that the ground state is not well defined [18]. B ased on these considerations, we adopt 

a vanishing three point temperature correlation function for the simple one field inflation 

models considered by [4]. Furthermore, if the observed CBR anisotropy is produced mainly 

by the gravity wave [19], the three point temperature correlation function will also vanish. 

Once the primordial density perturbation is generated by inflation, the temperature 

fluctuations of the CBR are related to the density perturbations through the Sachs-Wolfe 

formula in Eq.(l). The three-point temperature correlation function is given by [16] 

SW - 
ST 

H,6 --- 
(4sY J d3k1d3kZ 

< 6k,bk&k,-k2 >,ik;.(,,&-,&),,a 

Icp$lc, + k# 

It is also possible that the density fluctuations are generated through a cosmic vacuum 

phase transition [20]. In this case, the temperature fluctuations are related to the density 

perturbation [21,22] through 

($T = 2 J gdq. 

By making the following an&z [23] 

(5) 

b(k ‘?) = &k)fk(‘l), (‘51 

the three point temperature correlation is given by 

~~T=-(~~!IJd3~1d3k2Ck6~~P~‘~~~’ 
12 1 

I 
r)a x 

‘)i 

eik~.““(“-l.)f;,(rl)d~Jnn’ .ik~.~~(n-n.)~~~(~~~‘)~~ae-i(k;+k~).ni,(?-n,)i*~(ijdn 

(7) 

In the realistic model where the density perturbations are generated by a phase transition, 

fk(q) is a step function, and the time derivative is a &-fitnCtion,:jk(rj) = a(~ - nz), where 
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nr = no/G is the conformal time when the phase transition occurs. The three point 

temperature correlation function reduces to: 

(4’ = -‘;f$ / d3kld3kz 
< ‘kl’kz6-kl-kl >eik;.(el-<8)q’ 

k:k;lh + kz12 

eik;.(niz-nis)q 
I (9) 

where n’ = qs - r/z = r)s(l - -&=) M 7s when t >> 1. The expression for the three 

point temperature correlation function in which the density perturbations are generated 

at a late-time phase transition is identical to Eq. (4) except that the amplitude is 6 times 

larger (after the amplitude of power spectrum being properly normalized). Potentially, 

this result can be used to tell whether the density perturbation is generated primordially 

or through some physical processes at late time (after decoupling) [24]. 

From the discussion above, it is clear that the three point temperature correlation 

function is directly related to the bispectrum of the density perturbations. For a large 

variety of physical models that generate non-Gaussian density perturbations, the density 

perturbation 6 is well modeled by 

6 = 14 + 44 - l)l&, wj 

where 4 is a random Gaussian field with a variance of unity, 6s is the amplitude, and 

a is a constant. In the limit when a < 1, this model reduces to the two-field inflation 

model [25] which is a prototype for non-Gaussian adiabatic perturbations; when (Y >> 

1, the model reduces to the O(N) cr model 1261 which is a prototype for non-Gaussian 

isocurvature perturbations. It is worthwhile to note that the skewness K, which is defined. 

as K =< J3 >, has- different scaling relations with respect to the variance < J2 > in 

different limiting cases [IS]. In the case, when a < 1, < b3 >w cy < 6* >2, which is the 

same as the skewness-generated by gravitational evolution [27]. On other hand, (Y >> 1, 

< S3 >- a3 < cj2 >3, < cS2 >- 01’ < d2 >’ Thus, < b3 > / < 6* >3f2, cast.. 

The analysis of IRAS galaxy survey [ZS] shows that the observed skewness scales 

quadratically with the. variance in both the linear regimes and non-linear regime, which 

suggests that either the primordial density perturbations are Gaussian or if they are non- 

Gaussian, the coefficient (Y in Eq. (5) must be small. In the following discussion of 

non-Gaussian perturbations, we concetrate only on this latter case. 

The bispectrum P&i, lcs) for the non-Gaussian density fields which is described by Eq. 
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(10) is given by: 

P(kl,kz) = 2df’(kl)P(kz) + P(h)P((h + kz() + P(k2)P((k1 + kzl)]. (11) 

Putting this expression into the Eq. (4), we obtain the formula for the three point corre- 

lation function: 

SW _ 2a% 
fT 

(4rY J $,1d3k2[P(kl)P(k2)+P(k~)P(lkl +kzl) +P(kz)P(lkl + kzl)] 
k:k;lk, + kz12 

x,ik~:;(niL-ni3)qo eik;.(vi-nia)qo 
(12) 

As shown in the Appendix, this integral can be evaluated analytically for a power-law 

power spectrum: P(k) = Ak”. The result is that the three point temperature correlation 

function can expand into a Legendre polynomial in the same manner as the two-point 

correlation function (as shown in Eq. (2)) except that the argument for the Legendre 

function and the multipole coefficients is more complicated. In the limit when the beam 

width is small, c < 1, the observed three point temperature correlation function is given 

by following expression: 

fT(k,fi2,*3) = x(21 i- 1)c ( I til .rj13,1j22 .&3)exp(-1.5(I + 0.5)‘~~) 
1 

xA( 
r?lr~r%s-r?lr.~3-tiTjlz.rj13+1 

Itil-fk3I.I?%2--7?I3) 
17 (13) 

where 

Cl(rTQ i r?a$, tiz2 .%3) = 

- 2G;;A2 I J 
dhdkzjr(hwh - &l)ji(h@z - fi3I)Qd 

k: +k,2 knkn 
2k k ) 1 2 

1 2 

+ J dkldkz(k; + J$‘)w(k,, kz)jl(hml% - hl)jl(k2qOl& - %I)], (14) 

and 
1 i 

ar(kl,kz) = 2 --1 J dzP,(z)(kf + k,2 - 2klk2z)(+). (15) 

The formula above is far too complicated to be of any intuitive use. In the following 

discussions, we use the leading order of’C(, which reads as 

C 
20(ff,,)~+*“A~ 1 

I?- 
(4rY 

W;)~($,Wh~ - 7iL31. lriz2 - ti31)( -“--l), 
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where 

F(n,Z) = J CO z(2,,-2)j;(z)& = Erc3 - 2n) ‘[c2’ + 2n - ‘)i21 
8 l-+(2 - n)’ T[(2[ + 5 - 2n)/2]. (16) 

0 
Discussion: 

(1) The amplitude of the three point correlation function depends on the Gaussian- 

ity of the density perturbation. A Gaussian density field gives a vanishing three point 

temperature correlation function and the correlation function deviates linearly from zero 

with the skewness of the primordial density perturbations (non-linear effects can generate 

a non-vanishing three point temperature correlation function for the Guassian primordial 

density perturbation, but it is negligible compared with the case we are studying when 

skewness a > 0.01). Furthurmore; the correlation function depends upon the beam width 

0 used in the experiment as well as the epoch when the density perturbations are generated 

(before or after photon decoupling). Thus, it is helpful to analyze data with a different 

angular resolution. The three point correlation function will be enhanced as the beam 

width decreases. In particular, by comparing the three point temperature correlation done 

with COBE, where the data is smeared over N 10” and the correlation function that might 

be obtained with a full sky map done with an instrument that can get the resolution down 

to l”, one might be able to tell whether the temperature fluctuations on different angular 

scales amgenerated by gravitational potential at the last scattering surface (Sachs-Wolfe 

effect, which is the dominant effect for adiabatic perturbation generated by inflation) or 

by the change of the gravitational potential along the photon path (modified Rees-S&ma 

effects, which are the dominant effect for isocurvature perturbation generated by topolog- 

ical defects or by a late-time phase transition). The correlation smplit:de on a 1” scale 

will be one order of magnitude larger if the perturabtions on that scale are generated by 

causal processes that occurred after decoupling. This is one of the unique. properties of 

the three point correlation function and should be testable by future CBR experiments. 

(2) We consider a special case when in1 - 77~s and ins - ins are unit vectors. This is 

true when tir . ins = 7%~ . ins = 0.5. In this case, [T is a function of inI rizs only: 

[T = c C,(21 + I)&(& ?+-‘~5(~+0~5)202r 
I 

where Cl - h for n = 1 H-Z power spectrum. This function is plotted in Fig. (1) as a 

function of 0, where cos(0) = riL . fi, with monopole, dipole and quadrupole removed. The 

shape is similar to the two point correlation function with proper normah&ation. 
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(3) Generally, the angul,ar dependence of [T is: 

&- N (I& - f&j. Ifi2 _ ,#-n-1) . p,(“’ 

The shape of the three point temperature correlation function is plotted in Fig (2) for 

another interesting special case [I?‘] when the three beams have the same angle with respect 

to each other, e.g., 51 ti:, = r?zs fia = tis . riLr = cos@), as a function of ,@, with two 

different power spectral indices: n=l (Harrison-Zeldovich spectrum) and n=0.7. 

As mentioned earlier, the COBE DMR experiment has put a constraint on the-power 

spectra index (91. Since the two point correlation function has a weak dependence on the 

power spectrum, there still exists a large range of parameters that can fit the DMR data. 

However, as shown in Fig. (2), the three point temperature correlation function has a 

stronger dependence on n. Thus, it is hoped that an analysis of the three point correlation 

function can put a more stringent limit on’n. 

In conclusion, we have shown the importance of testing the:predictions of inflation 

by a three point temperature correlation function. Valuable information, including the 

Gaussinality of the density perturbation -and the power spectra index can be obtained 

from this analysis. Furthermore, the existing COBE data should be sufficient to carry out 

an initial significant exploration of this test. 

We acknowledge useful discussions with Jim Fry, Michael Turner, Andrew Jaffe and 

Albert Stebbins. This work is supported in part by NSF grant #PO-22629 and by NASA 

grant #NAGW 1321 at the University of Chicago and by DOE and by NASA through 

grant #NAGW 2381 at Fermilab. 



Appendix 

In this appendix, we present the mathematical details on deriving Eq. (13). 

First, we can expand the cross term in the denominator in Eq. (12) by the Legendre 

polynomial: 

PI -I- kzl” = X(21 + l)Cl(kl, k*)P,(ic* * 124, 
1 

then, by using the following expansion for the plane wave: 

and the sum rule of the spherical harmonics, 

Pl(el. ii) = &m~,ww”) 

The integration over solid angle of & and k, gives the anglar dependence on the beam 

directions: 

c N p,( (&I - ti3). (Cl - ti3) . 

Ifi1 - &3(. pa2 - ti3( 

)Il(hrlOlrfi, - ~3l)jl(k*vJl~* - tjz3J). 

The integration over the kl and ks gives the multipole coefI%ents and the angular depen- 

dence. 
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FIGUERE -CAPTIONS 

Fig.1: The three point correlation as a function of the angle between two beams. The 

dotted line is the two point temperature correlation function with monopole, dipole and 

quadrupole terms removed. The power spectrum is assumed to be H-Z (n=l). 

Fig.2:~ The dependence of the three point correlation function on the power law index n. 

The dotted line is for n = 0.7, while the solid line is for n = 1. 
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